By Jane Palmer for Ensia.
Broadcast version by Eric Galatas for Colorado News Connection reporting for the Solutions Journalism Network-Public News Service Collaboration
The summer of 2022 was tough for farmers in the American West: Hot, dry conditions led snow to melt early, reservoirs to run low and streams to pare down to mere trickles. For many, that meant less water to grow crops and reduced yields. But Byron Kominek, a farm manager near Longmont, Colorado, enjoyed an abundant harvest of peppers, tomatoes, squash and lettuces.
When his family farm stopped making a profit, Kominek installed solar panels on the plot and invited Sprout City Farms to grow crops beneath them. It's a setup known as agrivoltaics - where solar panels and agriculture occupy the same land - and the duo effectively harvests the sun twice, for both food and electricity.
Protected from the high midday sun, plants under panels become mini swamp coolers: As they open their pores to photosynthesize, water escapes from their leaves - creating a cooler microclimate. This reduction in heat increases the efficiency of the panels - even as the panels are sheltering the crops beneath from overexposure to the hot sun. Consequently, agrivoltaics can provide benefits to both farmers and electricity producers. In the past few years another possible advantage has come to the fore: crops grown under panels need less water.
"If you spilled your water in the shade versus the sun, where would it stay wet longer?" asks Greg Barron-Gafford, a University of Arizona professor who has helped set up the site as well as experimental agrivoltaic plots in Arizona, Africa and Israel.
At one such site, Biosphere 2 near Oracle, Arizona, Barron-Gafford has found that some crops beneath solar panels only need watering every couple of days, compared to every few hours for those grown in direct sunlight. Agrivoltaic cherry tomatoes proved 65% more water efficient than those grown under an open sky, for example, and the total fruit production doubled. Researchers are now scrutinizing how different spacings of panels are impacting the water needs of a range of crops in the hot, dry climate of the Sonoran Desert.
Meanwhile, at Kominek's farm, now called Jack's Solar Garden and the largest commercially active agrivoltaics system in the United States, the same scientists are testing which crops thrive under panels in the varied seasons of Colorado.
Barron-Gafford believes agrivoltaics could be help farmers in the West who want to keep farming in the face of climate change. "We want to adapt our food system to survive through periods of drought and warmer temperature changes, and that comes down to easing our dependence on irrigation," he says.
Harvest Hacking
Against the backdrop of Sonoran Desert scrub on a sunny but chilly November morning, Nesrine Rouini tends to seedlings under a canopy of solar panels at the Biosphere 2 site. A mere 9- by 18-meter (30- by 59-foot) garden, the experimental agrivoltaics site resembles an intensive care unit for plants - stakes bearing barcodes identify each new sprout, and a network of cables and wires runs along each seedbed to a centralized data logger. This Gordian knot of leads and controls transmits real-time data of a plant's living environment - soil moisture, temperature, solar radiation and a host of other variables - hour by hour to the research group in Tucson. Simultaneously, cameras track its growth from seedling to sprouting to flowering. A plant can't so much as open a stoma without its actions being spotted, relayed and recorded.
Once a week, Rouini, an agrivoltaics researcher on Barron-Gafford's team, visits the site and a control plot, which is not under panels. Using a handheld gas exchange device, she takes the pulse of each plant and checks how well it's coping with the shade or open sky. "This is how we found out that plants in the control plot experience midday depression and don't photosynthesize," Rouini says. "While the ones under the panels keep trucking along."
Irrigation on both plots starts at 7 a.m. By 9 a.m. the control plot soil already appears drier to the naked eye than earth under the panels. "Without shade the water just evaporates so much quicker," Rouini says.
Basic physics dictates that crops grown under panels need less water, but scientists still don't know how each crop will fare in each location and exactly how much water will be saved. Consequently, in Arizona, Colorado and a network of nearly 30 sites around the country, groups of researchers are trying to close that data gap.
Although scientists have studied the interaction between light and plants for decades, the novel shading regime of solar panels presents many unknowns, says Jordan Macknick, the lead energy-water-land analyst for the National Renewable Energy Laboratory and the principal investigator of the Innovative Solar Practices Integrated with Rural Economies and Ecosystems (InSPIRE) network of agrivoltaic sites. "The Holy Grail would be for any farmer to be able to pick a point on a United States map and retrieve information about what crops they could grow, the best configuration of panels and how much water they need," he says.
Focusing on Feasibility
In Colorado, Liza McConnell, Jack's solar research farm manager with Sprout City Farms, observed that the lettuces grown with half the amount of water administered to a control plot were only a little smaller and significantly sweeter than their sun-exposed equivalents. Celery, typically a high-water-use crop, also fared well under a reduced watering regime, as did smaller peppers, but the larger Anaheim peppers under panels didn't produce as much fruit as hoped. With the West in a prolonged drought and climate change taking its toll, people might have to adapt to not getting the exact type of pepper they want all year round McConnell says.
"In the face of climate change we need all options on the table," she says. "Agrivoltaics is not the only solution, but it is going to be one of the things that will help keep our communities safe and resilient."
Despite its many benefits, agrivoltaics may not be feasible for large-scale, single-crop farms that grow corn and soybeans and rely on using heavy machinery. Farming under solar panels is even challenging for farmers on their feet: McConnell equates it to farming on an obstacle course. On the flip side, the panels provide much needed shade for farmers on hot days.
"We're producing energy, we're producing food, we're conserving water, and we're building soil health that further conserves water and nutrients," McConnell says. "And then we're also protecting necessary human labor and quality of life for farmworkers."
The yield of certain crops, specifically warm-season peppers and tomatoes, might also be less under panels in Colorado, McConnell says. But these fruits only ripen at certain temperatures; if it's too hot, they won't ripen at all. "So a reduced yield is still better than having no tomatoes in the face of climate change," she says.
Macknick points out that the revenue that farmers can make by selling solar-generated power will more than compensate for any reductions in farm produce and that agrivoltaics could help farmers in the West and the Colorado River Basin be more financially resilient to droughts and climate change.
Another potential benefit of agrivoltaics is that it could open more land to farming, including Indigenous lands where food security and energy access have been issues. In hot and dry desert lands, for example, growing crops under panels can reduce the need for scarce water and increase productivity and feasibility for farming efforts. "Can some of these places now produce food because we've taken off that harsh edge of the environment?" Macknick poses.
Agrivoltaics also offers the potential to harvest and store rain so it can be used for irrigation. Gutters attached to the bottom of solar panels can capture rain and channel it into small reservoirs. But challenges exist in the execution. In Tucson, for example, water simply flows off water panels and gets wasted. "It would be good to think about how to set up guttering on panels to collect water intentionally and do it the right way," Barron-Gafford says.
Large-scale agrivoltaics endeavors will face plenty of challenges, and they won't be right for every farmer, Macknick says. But there's potential to improve yields of some crops while enhancing soil health, reducing water needs and producing power, too. "It is certainly going to play a growing role in farming," Macknick says. "I think we are going to see more and more of this."
Jane Palmer wrote this article for Ensia.
get more stories like this via email
New Mexico farmers finding it more difficult to grow historic crops are taking up conservation techniques to meet the challenge.
Drought, water scarcity, and extreme weather events combine to require growers to adopt new methods and modern tools.
John Idowu, extension agronomist specialist at New Mexico State University, shows farmers how to improve soil health and help control wind erosion. For long term success, he said they need to focus on sustainable, regenerative practices.
"How can I optimize my system and make it more resilient to climate change, to weather changes?" Idowu explained. "Once we have all those things worked out, farmers will tend to stay in business for longer."
Earlier this year, a NOAA satellite captured an image of winds lifting vast amounts of dust and dirt from New Mexico's dry farmlands. Some forecasters compared it to images last seen in the 1930s Dust Bowl.
Plowing agricultural fields annually was a common practice until the Dust Bowl period but in recent decades no-till or low-till farming operations have gained traction.
Bonnie Hopkins Byers, program director for the San Juan County Extension Service, encouraged New Mexico farmers to get a soil analysis and consider adopting the less aggressive approach. She said it could mean they do not need to till every year.
"One of the biggest problems is that people do something because that's the way they've always done it, or because it's the way their parents have done it, or their grandparents," Hopkins Byers acknowledged. "My philosophy has always been if you're going to till something over, till something in."
Intense dust storms known as "haboobs" were originally thought to be confined to Africa's Sudan but are becoming more common in other arid regions such as the Southwest.
Idowu stressed it makes the adoption of regenerative practices more urgent, as topsoil on New Mexico farmland disappears due to drought, land use changes and wind, which he noted has been particularly strong this year.
"The wind has been a major force, especially in the spring, so many days where you couldn't do anything outside because of the wind," Idowu observed. "You have a lot of dust and that means a lot of erosion and that is exactly what you don't like when it comes to crop production."
The New Mexico Healthy Soil Working Group formed to help farmers improve their land and livelihoods.
get more stories like this via email
By Carolyn Beans for Lancaster Farming.
Broadcast version by Mark Richardson for Keystone State News Connection reporting for the Lancaster Farming-MIT Climate Change Engagement Program-Public News Service Collaboration
At Mountain View Holsteins in Bethel, Pennsylvania, owner Jeremy Martin is always working to make his dairy more efficient.
Currently, he has his sights set on a manure solid-liquid separator. He'd like to use the solid portion of his manure as bedding for his 140 cows and the liquid as fertilizer.
But the project is pricey - he expects the equipment alone will run around $100,000. So Martin hopes to defray the cost through grant funding for dairy projects that reduce greenhouse gas emissions. Removing much of the solids from manure reduces the feed for the methane-producing microbes that thrive in the anaerobic conditions of liquid manure.
The approach is just one of many dairy practices now considered "climate-smart" because they could cut production of climate-warming gases.
For Martin, a manure separator wouldn't be possible without a grant.
"Once it's in place and going, I think some of these practices will pay for themselves, but the upfront cost is more than I can justify," he says. "If there's money out there to pay that upfront cost to get started, it makes sense to me to do it."
Across Pennsylvania, dairy farmers are learning more about climate-smart practices and funding opportunities, and weighing whether these changes are really sustainable for their businesses as well as the environment.
The Latest Buzzword
USDA has defined climate-smart agriculture as an approach that reduces or removes greenhouse gas emissions, builds resilience to the changing climate, and sustainably increases incomes and agricultural productivity.
"Before climate-smart was a thing, we called it conservation. We called it stewardship," says Jackie Klippenstein, a senior vice president at Dairy Farmers of America.
Indeed, long before the Food and Agriculture Organization of the United Nations coined the term "climate-smart agriculture" in 2010, Pennsylvania dairy farmers had adopted many of the practices that now fall under the label.
For dairy, climate-smart practices largely include strategies that reduce greenhouse gases emitted from cows, manure or fields. Tried and true conservation practices like cover cropping and reduced tillage count.
So do newer practices like using the feed additive Bovaer to reduce methane production in a cow's rumen, or precision nitrogen management to reduce nitrous oxide emissions from fields.
Paying for Climate-Smart
"Margins are very tight on the dairy farm," says Jayne Sebright, the executive director of the Center for Dairy Excellence, a public-private partnership to strengthen Pennsylvania's dairy industry. "Some of these (climate-smart practices) are good for the climate, but they don't make good economic sense until they're subsidized."
In 2022, the center joined a Penn State-run program called "Climate-smart Agriculture that is profitable, Regenerative, Actionable and Trustworthy" to provide dairy farmers with funds for switching to climate-smart practices.
CARAT was launched with a $25 million USDA Partnerships for Climate-Smart Commodities grant, but the future of the Pennsylvania project is in doubt. In April, USDA canceled the partnership program, suggesting that recipients reapply to a new USDA initiative called Advancing Markets for Producers.
Over 60 dairy farmers across Pennsylvania, including Martin, had already applied and been accepted into the first phase of CARAT. This initial phase was intended to help farmers identify the best climate-smart practices for their operations. In the second phase, farmers would have applied for funding to implement those practices. One farmer was already paid for his project before the USDA canceled the partnership program.
"There are fewer funding sources for climate-smart projects than in the last administration. However, private organizations and other entities are funding climate-smart projects," Sebright says. "Depending on what the practice is, (climate-smart) could also be conservation projects. It could be water quality projects."
Sebright suggests that dairy farmers also look for support through state-level funding, such as Pennsylvania's Resource Enhancement and Protection program, which offers tax credits for implementing practices that benefit farms and protect water quality.
Pennsylvania dairy farmers can also contact their county conservation districts to ask about funding opportunities for climate-smart projects, says Amy Welker, a project manager and grant writer for Pennsylvania-based Jones Harvesting, which operates Maystone Dairy in Newville and Molly Pitcher Milk in Shippensburg.
In the next year, Jones Harvesting plans to install a methane digester and solid-liquid separator at a site near Maystone Dairy. The digester is funded with an Agricultural Innovation Grant from the state and an Environmental Quality Incentives Program grant from USDA, along with private funds.
There's money out there for farmers who implement climate-smart practices, says Welker. But "you can't just look at one source."
Long-Term Payoffs
Ultimately, for climate-smart projects to make economic sense, they must continue paying for themselves long after the initial investment. One major goal of the USDA's Partnerships for Climate-Smart Commodities program was to develop markets where farmers adopting these practices could earn a premium.
Some dairy farmers might see that return in the carbon market. National checkoff organization Dairy Management Inc. and its partners have pledged to shrink the industry's net greenhouse gas production to zero by 2050. There are growing opportunities for companies working toward that goal in the dairy supply chain to pay farmers for their contributions.
Early last year, Texas dairy farmer Jasper DeVos became the first to earn credits through the livestock carbon insetting marketplace. DeVos earned carbon credits by reducing methane emissions with a feed protocol that included the feed additive Rumensin. Dairy Farmers of America then purchased those credits through Athian, a carbon marketplace for the livestock industry.
Increased Efficiency
Even without direct monetary payoff, many farmers who adopt climate-smart practices reap rewards in improved efficiency and productivity.
"When you look at climate-smart, you also have to look at what's farm smart," Sebright says. She suggests that farmers choose practices that benefit their farms, not just the climate.
A farmer might decide to put a cover and flare system on a manure pit, not only because it reduces methane emissions but also because it keeps rainwater out of the pit and reduces the number of times each year the pit must be emptied.
Andy Bollinger of Meadow Spring Farm in Lancaster County has been running a manure separator since 2009. The liquid fertilizes his fields, and a portion of the solids becomes bedding for his cows.
He estimates the system saves him at least $20,000 a year in bedding costs.
"We put a fresh coating of it onto the stalls that our cows lay in every day and scrape the old stuff out," says Bollinger, who is also the vice president of the Professional Dairy Managers of Pennsylvania. "It seems to work quite well, and it saves us from buying other bedding products."
No-till farming is also a cost saver because it reduces field passes with equipment, says James Thiele of Thiele Dairy Farm in Cabot, which has been 100% no-till for at least six years. The practice saves him money on fuel and herbicides.
"You're saving your environment, and you're also saving green," he says.
But Thiele questions whether some other climate-smart practices like methane digesters would be practical for his farm, which has 75 to 80 cows.
"I don't know if it'd be worth it for somebody as small as I am," he says.
"I think over the next few years, we'll rapidly see (climate-smart) tools become more available, and we'll see more organizations like DFA talking to our small to mid-sized farmers to make sure they understand they've got a place in this, they can benefit from it, and the practices and tools are affordable to them as well," Klippenstein says.
Weighing Climate-Smart
Many dairy farmers wonder whether some of the practices championed as climate-smart will really support their businesses.
Donny Bartch of Merrimart Farms in Loysville has adopted environmental practices from cover cropping to a manure management plan.
"I want to protect the environment. I want to keep my nutrients here on the farm and be sustainable for another five generations," Bartch says. "But we have to make sure that we're making the right decisions to keep the business going. And to do some of these (climate-smart) practices, the only way they pencil out is to have those subsidies."
There is also frustration with a system that rewards climate-smart improvements made today without acknowledging the contributions of farmers who were climate-smart before anyone put a name on it.
"You come around and want to start rewarding people for doing these things. You really need to start with the ones that have been doing it for a long time, but that's really not what happens," says Jim Harbach of Schrack Farms in Loganton, whose farm has been no-till for 50 years.
Climate-smart grant money and carbon credits are typically awarded for the implementation of new practices.
"It's just the unfortunate way that all of the policies and regulations were written," Sebright says. "What I would say is, if you do a climate-smart plan, maybe there are practices or things you can do to enhance or support or take what you're doing a step further."
Scientific Measurements on Real Farms
Some dairy farmers also want to know more about how climate-smart practices will affect their farms before jumping in.
Steve Paxton remembers participating in a government program to improve timber over 50 years ago on his family dairy, Irishtown Acres in Grove City. His family members were paid to climb up into their white pines and saw off many of the bottom branches.
The goal was to create a cleaner log. Instead, more sunlight shown through, which caused grape vines to climb up and topple the trees.
"The bottom line is, there was research done, it looked good, but it hadn't had enough time to follow through and see just really what the end results would be," Paxton says.
When Paxton sees estimates of how some practices might reduce greenhouse gases emitted from cows, he wonders how much of that research has been tested on actual dairies.
"I think some of it now is just kind of a textbook estimate of what's happening," he says.
More meaningful data is needed to show how climate-smart practices reduce greenhouse gases on individual dairies, Sebright says.
As part of the CARAT program, Penn State researchers planned to place greenhouse gas sensors on a dozen dairies and test how much greenhouse gas production falls as farmers experiment with different practices. The researchers intended to then use that data to build models that predict how those practices may affect emissions on other farms. They will still measure emissions this spring on one farm that is experimenting with a new approach for spreading manure in fields of feed crops.
"The real goal of (CARAT) is to have research that says, if you put a cover and flare (manure storage system) on a 500-cow dairy, this is how greenhouse gas emissions will change," Sebright says. "Or if you use Bovaer on a 90-cow herd, here's how this will affect greenhouse gas emissions."
Martin of Mountain View Holsteins has his own personal beliefs about where a dairy farmer's responsibilities to the planet begin and end. But from a business perspective, he feels compelled to adopt climate-smart practices because he expects the industry will eventually require them.
"Climate concerns are coming whether I'd like it or not," he says. "So my thought is, I might as well get started on it while there's funding to do it."
Carolyn Beans wrote this article for Lancaster Farming.
get more stories like this via email
Oregon's new state budget cuts funding for programs intended to protect residents from extreme weather and make renewable energy more accessible.
Climate justice advocates said it is a major setback after years of progressive climate policies.
Ben Brint, senior climate program director for the Oregon Environmental Council, is disappointed to lose funding for the Community Renewable Energy Grant Program, which supports a variety of projects tailored to communities, including microgrids and solar storage.
"We felt legislators didn't fund climate resilience programs while fires are raging, people's houses are burning down and the state has already experienced record heat waves in June," Brint pointed out. "Legislators don't see we are in an actual climate emergency and chose inaction."
Brint said the grant program aimed to help low-income, rural and communities of color, those most impacted by climate disasters. Lawmakers attributed the cuts to budget shortfalls and uncertainty over federal funding.
Joel Iboa, executive director of the Oregon Just Transition Alliance, said the Community Resilience Hub program, which creates networks as well as physical places to protect people from extreme cold, heat and smoke also lost funding this session. He argued the hubs are effective because communities design them to meet their unique needs.
"Whether it be a place to plug in your phone or a place to go get diapers or get an air conditioner or whatever your community may need," Iboa outlined. "Depending on what's going on."
A heat pump program for rental housing, aimed at making energy-efficient heating and cooling more affordable, was also cut this session.
Brint added he realizes legislators have to make tough decisions about how to fund health care and housing but emphasized climate change is connected to those issues.
"When we're talking about heat pumps or the C-REP program, we're talking about people's health and livelihoods and saving lives in the face of climate fueled disaster," Brint stressed.
Brint added since climate change is not going away, the movement to push for climate resilience will not either.
get more stories like this via email